Ecotox Report for Case # P-18-0077

General

Report Status: Complete
Status 09/19/2018 CRSS Date: 01/04/2018

Date:

SAT Date: 01/05/2018 **SAT** T.

Chair: Behrsing

Consolidated N Consolidated Set:

PMN:

Ecotox Analogs:

Related Cases:

Health Related ANALOGS:

Cases:

Submitter: Koch Agronomic

Services

CAS Number: 2093385-47-6

Chemical Urea,

Name: reaction products with N-butylphosphorothioic triamide and

formaldehyde

Use: Reagent for the controlled release of a

urease inhibitor in urea-based fertilizers used on farms. %Phosphorus = 12.4% (measured). P2REC: CRSS: Forward. P2 Claim: The PMN material

1S

intended to replace direct use of N-butyl-phosphorothioic triamide in fertilizer formulations. NBPT, when in contact with the soil, degrades in a relatively short period of time through oxidation and hydrolysis. The PMN material is stable enough to extend the availability

hydrolysis. The PMN material is stable enough to extend the availability of NBPT, while being labile enough that NBPT is released when water is present, ensuring that a low level of NBPT is present for the days or weeks during which the urea fertilizer is taken up by the

crop.

Trade Name: Anvol (TM)-trademarked name of the final

product formulation

PV-max(kg/yr): Ecotox Assessor: Kennedy,

Amuel

Fate Summary

Statement

Fate P-18-0077

Summary

Statement: FATE: Estimations for hydrolysis product N-butylphosphorothioic

triamide,

MW = 167, C4H14N3PS log Kow = 0.44 (M)

```
log Koc =
1.34 (E)
log Fish BCF = 0.50(3)(E)
log Fish BAF = 0.03(1)(E)
FATE: Estimations for hydrolysis product urea-formaldhyde oligomer, MW
= 162, C4H10N4O3
log Kow = -4.01 (E)
log Koc = 1.00 (E)
Fish BCF = 0.50(3)(E)
log Fish BAF = -0.05 (1) (E)
PMN
Substance: Solid with MP = Dec. 150 ^{\circ}C (M)
log Kow = 0.60 (M for
mixture)
S = Reacts / 35 mg/L at 25 °C / 37 g/L at 25 °C (M / M for
mixture / E)
Hydrolysis Half-life = hr-da
VP = 3.3E-6 \text{ torr at } 25
°C (E)
BP = 393 \, ^{\circ}C \, (E)
H < 1.00E-8 (E)
POTW removal (%) =
PMN 90 via hydrolysis; then Hyd Pdt NBPT 0-10;
Hyd Pdt
urea-formaldehyde oligomers 75-90 via biodeg and hydrolysis; Hydrolysis
(OPPTS 835.2120): t1/2(pH4,7,9):hr/hr-da/da
Time for complete ultimate
aerobic biodeg = Hyd Pdt NBPT > mo;
Hyd Pdt urea-formaldehyde
oligomers wk
Sorption to soils/sediments = Hyd Pdt NBPT low; Hyd Pdt
urea-formaldehyde oligomers low
PBT Potential: PMN P1B1; Hyd Pdt NBPT
P3B1; Hyd Pdt urea-formaldehyde oligomers P1B1
*CEB FATE: Migration to
ground water = Hyd Pdt NBPT rapid;
Hyd Pdt urea-formaldehyde
oligomers slow
Bioconcentration factor to be put into E-FAST: Hyd Pdt
Hyd Pdt urea-formaldehyde oligomers 3
PMN Material:
```

Overall wastewater treatment removal is 90% via rapid hydrolysis (hydrolysis half-life: hours to days).

PMN Material:

Low

Persistence (P1) is based on rapid hydrolysis (hydrolysis half-life: hours to days).

Low Bioaccumulation potential (B1) is based on rapid

hydrolysis (hydrolysis half-life: hours to days).

Hydrolysis Product

(N-butylphosphorothioic triamide):

Overall wastewater treatment

removal is 0-10% via low biodegradability, low sorption and low stripping.

Sorption to sludge is low based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Air Stripping

(Volatilization to air) is negligible based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Removal by biodegradation in wastewater treatment is negligible based on BIOWIN model estimates and data from analogous chemicals.

The

aerobic aquatic biodegradation half-life is greater than months based on BIOWIN model estimates and data from analogous chemicals.

The

anaerobic aquatic biodegradation half-life is greater than months based on the aerobic biodegradation half-life. The anaerobic biodegradation half-life is projected to be greater than or equal to the aerobic biodegradation half-life.

Hydrolysis half-life is greater than

months based on measured data (hydrolysis half-life: 92 days at pH 7 and 58 minutes at pH 3).

Sorption to soil and sediment is low based on

the estimated physical-chemical properties from EPISUITE.

Migration

to groundwater is rapid based on the estimated physical-chemical properties from EPISUITE.

Hydrolysis Product (N-butylphosphorothioic

triamide):

High Persistence (P3) is based on the estimated anaerobic

biodegradation half-life.

Low Bioaccumulation potential (B1) is

based on the BCFBAF model estimates.

Hydrolysis Product

(Urea-Formaldehyde oligomer):

Overall wastewater treatment removal is

75-90% via biodegradation and hydrolysis.

Sorption to sludge is low

based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Air Stripping (Volatilization to air) is

negligible based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Removal by biodegradation in

wastewater treatment is moderate based on BIOWIN model estimates.

The aerobic aquatic biodegradation half-life is weeks based on BIOWIN model estimates.

The anaerobic aquatic biodegradation half-life is greater than months based on the aerobic biodegradation half-life. The anaerobic biodegradation half-life is projected to be greater than or equal to the aerobic biodegradation half-life.

Hydrolysis half-life

is days based on analogous chemicals and professional judgment.

Sorption to soil and sediment is low based on the estimated physical-chemical properties from EPISUITE.

Migration to groundwater

is slow, mitigated by biodegradation and hydrolysis.

Hydrolysis

Product (Urea-Formaldehyde oligomer):

Low Persistence (P1) is based

on further hydrolysis of the urea-formaldehyde oligomer (hydrolysis half-life: days).

Low Bioaccumulation potential (B1) is based on

BCFBAF model estimates.

Bioconcentration/Bioaccumulation factor to be

put into E-Fast: 3 (hydrolysis products).

Physical Chemical Information

Molecular 239 23

Weight:

Wt% < 500: Wt% < 1000:

Physical Solid

State - Neat:

Melting Dec. ca.
Point: Point (est): 150

MP (EPI): 85.17

Vapor 0.000003

Pressure: Pressure (est):

VP 3.29e-006 **(EPI):** Water 0.035000 Water 37.1/Reacts **Solubility (est): Solubility: Water Solubility (EPI):** Henry's Law:: Log Koc: Log Koc (EPI): **Log** -1.69 Log Kow: Kow (EPI): Log **Kow Comment:**

SAT

Concern Level

Ecotox 2
Rating (1):
Ecotox
Rating Comment
(1):
Ecotox Rating
(2):
Ecotox
Rating Comment
(2):
Ecotox
Rating Comment
(2):
Ecotox Route of All releases to
Exposure: water

Ecotox Comments

Exposure Y
Based Review
(Eco):
Ecotox
Comments:
Exposure Based
Testing:

PBT Ratings

Persistence	Bioaccumulation	Toxicity	Comments	
1	1	2	PMN	
3	1	2	Hyd Pdt NBPT	

Persistence	Bioaccumulation	Toxicity	Comments
1	1	2	Hyd Pdt urea-formaldehyde oligomers

Eco-Toxicity Comment:

Fate Ratings

Removal 9	0;0-10;75	-90				
in WWT/POTW						
(Overall): Condition	Datina		Dadin a I)		C
Condition	Rating Values	1	Rating 1	Description 3	4	Comment
Fish BCF:	varues	1	<u> </u>	<u> </u>	4	
Log Fish BCF:						
WWT/POTW	;1;1	Low	Moderate	Strong	V Strong	
Sorption:	,1,1	Low	Moderate	Strong	V. Strong	
WWT/POTW	;4;4	Extensive	Moderate	Low	Negligible	
Stripping:	, ', '	LACHSIVE	Moderate	Low	regugiore	
Biodegradation	;4;3	Unknown	High	Moderate	Negligible	
Removal:	, ,-		\mathcal{S}			
Biodegradation		Unknown	Complete	Partial		
Destruction:			•			
Aerobic Biodeg	;4;2	<= Days	Weeks	Months	> Months	
Ult:						
Aerobic Biodeg		<=	Weeks	Months	> Months	
Prim:		Days				
Anaerobic	;4;4	<= Days	Weeks	Months	> Months	
Biodeg Ult:			XX	3.6	. 3.6	
Anaerobic		<= Dava	Weeks	Months	> Months	
Biodeg Prim:		Days <=	Hours	Davia	>=	P-NR
Hydrolysis (t1/2 at pH		Minutes	nouis	Days	Months	r-INK
7,25C) A:		Williams			Months	
Hydrolysis (t1/2		<= Minutes	Hours	Days	>= Months	
at pH 7,25C) B:		1.11114405		- -	1.1011110	
Sorption to	;4;4	V. Strong	Strong	Moderate	Low	
Soils/Sediments:	, ,	- 6	3			
Migration to	;4;2	Negligible	Slow	Moderate	Rapid	;Hyd Pdt
Ground Water:						NBPT rapid; Hyd Pdt

Remova	190;0-10;75	-90				
in WWT/POTW		, ,				
(Overall)	:					
Condition	0		Rating	Description		Comment
	Values	1	2	3	4	
						urea- formaldehyde oligomers slow
Photolysi A, Direct		Negligible	Slow	Moderate	Rapid	
Photolysis B Indirect	•	Negligible	Slow	Moderate	Rapid	
Atmospheric Ox A, OH		Negligible	Slow	Moderate	Rapid	
Atmospheric Ox B, O3	(Negligible	Slow	Moderate	Rapid	
	hydrolysis open Mate Low Persis half-life: ho Low Bioacc based on ra Hydrolysis Overall wastewater sorption an Sorption to estimated p estimates. Air Strippii on the estim model estim Removal by is negligibl chemicals. The aerobic than month chemicals.	(hydrolysis harial: tence (P1) is purs to days). cumulation pid hydrolysis Product (N-battreatment read low stripping sludge is low hysical-chemical (Volatilizationated physical enates). It is in the product (N-battreatment read low stripping sludge is low hysical-chemical (Volatilizationated physical enates). It is in the product (N-battreatment read low stripping sludge is low hysical-chemical (Volatilizationates). It is in the product (N-battreatment read low stripping sludge is low hysical chemical (N-battreatment read low stripping sludge). It is the product (N-battreatment read low stripping sludge is low hysical chemical (N-battreatment read low stripping sludge). It is the product (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge). It is the product (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low stripping sludge) is low hysical chemical (N-battreatment read low sludge) is low hysical (N-battreatment read low stripping sludge) is low hysical (N-battreatment read low sludge) is low hysical (N-battreatment	based on rapotential (B1 is (hydrolysical propertial) which based on the based on t	oid hydrolysis) is is half-life: ho orothioic trian 0% via low b he ies from EPIS	s (hydrolysis ours to days). mide): mide): midegradabil SUITE and S mased m EPISUITE ent and data fron eater and data fron	ity, low TPWIN model E and STPWIN n analogous

Removal 90;0-10;75-90

in WWT/POTW

(Overall):

Condition Rating Rating Description Comment Values 1 2 3 4

than months based on the aerobic biodegradation half-life. The anaerobic biodegradation half-life is projected to be greater than or equal to the aerobic biodegradation half-life.

Hydrolysis half-life is greater

than months based on measured data (hydrolysis half-life: 92 days at pH 7 and 58 minutes at pH 3).

Sorption to soil and sediment is low based

on the estimated physical-chemical properties from EPISUITE.

Migration to groundwater is rapid based on the estimated physical-chemical properties from EPISUITE.

Hydrolysis Product

(N-butylphosphorothioic triamide):

High Persistence (P3) is based on

the estimated anaerobic biodegradation half-life.

Low

Bioaccumulation potential (B1) is based on the BCFBAF model estimates.

Hydrolysis Product (Urea-Formaldehyde oligomer):

Overall

wastewater treatment removal is 75-90% via biodegradation and hydrolysis.

Sorption to sludge is low based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Air Stripping

(Volatilization to air) is negligible based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Removal by biodegradation in wastewater treatment is moderate based on BIOWIN model estimates.

The aerobic aquatic biodegradation half-life

is weeks based on BIOWIN model estimates.

The anaerobic aquatic

biodegradation half-life is greater than months based on the aerobic biodegradation half-life. The anaerobic biodegradation half-life is projected to be greater than or equal to the aerobic biodegradation half-life.

Hydrolysis half-life is days based on analogous chemicals and professional judgment.

Sorption to soil and sediment is low

based on the estimated physical-chemical properties from EPISUITE.

Removal 90;0-10;75-90

in WWT/POTW

(Overall):

Condition Rating Rating Description Comment
Values 1 2 3 4

Migration to groundwater is slow, mitigated by biodegradation and hydrolysis.

Hydrolysis Product (Urea-Formaldehyde oligomer):

Low Persistence (P1) is based on further hydrolysis of the urea-formaldehyde oligomer (hydrolysis half-life: days).

Low

Bioaccumulation potential (B1) is based on BCFBAF model estimates.

Bioconcentration/Bioaccumulation factor to be put into E-Fast: 3 (hydrolysis products).

Fate PMN Material:

Comments: Overall

wastewater treatment removal is 90% via rapid hydrolysis (hydrolysis half-life: hours to days).

PMN Material:

Low Persistence (P1) is

based on rapid hydrolysis (hydrolysis half-life: hours to days).

Low

Bioaccumulation potential (B1) is based on rapid hydrolysis (hydrolysis half-life: hours to days).

Hydrolysis Product

(N-butylphosphorothioic triamide):

Overall wastewater treatment

removal is 0-10% via low biodegradability, low sorption and low stripping.

Sorption to sludge is low based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Air Stripping

(Volatilization to air) is negligible based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Removal by biodegradation in wastewater treatment is negligible based on BIOWIN model estimates and data from analogous chemicals.

The

aerobic aquatic biodegradation half-life is greater than months based on BIOWIN model estimates and data from analogous chemicals.

The

anaerobic aquatic biodegradation half-life is greater than months based on the aerobic biodegradation half-life. The anaerobic biodegradation **Removal** 90;0-10;75-90

in WWT/POTW

(Overall):

Condition Rating Rating Description Comment Values 1 2 3 4

half-life is projected to be greater than or equal to the aerobic biodegradation half-life.

Hydrolysis half-life is greater than

months based on measured data (hydrolysis half-life: 92 days at pH 7 and 58 minutes at pH 3).

Sorption to soil and sediment is low based on

the estimated physical-chemical properties from EPISUITE.

Migration

to groundwater is rapid based on the estimated physical-chemical properties from EPISUITE.

Hydrolysis Product (N-butylphosphorothioic

triamide):

High Persistence (P3) is based on the estimated anaerobic

biodegradation half-life.

Low Bioaccumulation potential (B1) is

based on the BCFBAF model estimates.

Hydrolysis Product

(Urea-Formaldehyde oligomer):

Overall wastewater treatment removal is

75-90% via biodegradation and hydrolysis.

Sorption to sludge is low

based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Air Stripping (Volatilization to air) is

negligible based on the estimated physical-chemical properties from EPISUITE and STPWIN model estimates.

Removal by biodegradation in

wastewater treatment is moderate based on BIOWIN model estimates.

The aerobic aquatic biodegradation half-life is weeks based on BIOWIN model estimates.

The anaerobic aquatic biodegradation half-life is

greater than months based on the aerobic biodegradation half-life. The anaerobic biodegradation half-life is projected to be greater than or equal to the aerobic biodegradation half-life.

Hydrolysis half-life

is days based on analogous chemicals and professional judgment.

Sorption to soil and sediment is low based on the estimated physical-chemical properties from EPISUITE.

Migration to groundwater

Removal 9 in WWT/POTW (Overall):		90	-			
Condition	Rating		Ratii	ıg Descrip	tion	Comment
	Values	1	2	3	4	
is	s slow, mit	igated	by biodegradat	ion and hy	drolysis.	
l I	Hydrolysis					
P	roduct (Ur	ea-Fo	rmaldehyde olig	gomer):		
	Low Persist	ence ((P1) is based	,		
		,	sis of the urea-	formaldehy	de oligomer (l	hydrolysis
	alf-life: da	, ,		J	S (, ,
	Low Bioaccumulation potential (B1) is based on					
	BCFBAF m		1 \	,		
E	Bioconcent	ration/	Bioaccumulatio	n factor to	be	
p	out into E-F	Fast: 3	(hydrolysis pro	ducts).		

Ecotoxicity Values

Test organism	Test Type	Test Endpoint	Predicted	Experimental	Comments
Fish	96-h	LC50	>100	780	Est Top Left; Anlg
Daphnid	48-h	LC50	>100		"
Green Algae	96-h	EC50	8.4	280	" "
Fish	-	Chronic Value	>10	78	Est Top Left; Anlg ACR10
Daphnid	-	Chronic Value	>10	29	Est Top Left; Anlg ACR10
Green Algae	-	Chronic Value	2.8	97	"

Ecotox Value Predictions are based on QSARs for substituted ureas

Comments: (ECOSAR V2.0); MW 239; Log Kow = 0.60 (M, for mixture); solid with an unknown MP (P); S = 35 mg/L (M, for mixture), Reacts; effective concentrations based on 100% active ingredients and mean measured concentrations; hardness <150 mg/L as CaCO3; and TOC <2.0 mg/L.

Ecotox Factors

Factors	Most Sensitive Endpoint	Assessment Factor	CoC	Comment
Acute Aquatic		4	2100	Algae
(ppb):				
Chronic Aquatic		10	280	Algae
(ppb):				

Factors	Values	Comments
SARs:	Substituted Ureas	
SAR Class:	Substituted	
-	Ureas-Thiophosphoramide	
TSCA NCC		
Category?	None	

Recommended

Testing:

Ecotox Factors Environmental

Comments: Hazard: Environmental hazard is relevant to whether a new chemical substance is likely to present unreasonable risks because the significance of the risk is dependent upon both the hazard (or toxicity) of the chemical substance and the extent of exposure to the substance. EPA estimated environmental hazard of this new chemical substance using the Ecological Structure Activity Relationships (ECOSAR) Predictive Model (https://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model).

Based on these estimated hazard values from ECOSAR, EPA concludes that this chemical substance has moderate environmental hazard.

· Substance

does not fall within the TSCA New Chemicals Categories.

· ECOSAR

chemical class of Substituted Ureas.

- · Analog data were considered for
- · Moderate hazard based on acute and chronic concentrations of concerns of 2,100 ppb and 280 ppb, respectively.

Comments/Telephone

Log

<u> </u>		
Artifact	Update/Upload	
	Time	